Metamath Proof Explorer


Theorem funcres2c

Description: Condition for a functor to also be a functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017)

Ref Expression
Hypotheses funcres2c.a A = Base C
funcres2c.e E = D 𝑠 S
funcres2c.d φ D Cat
funcres2c.r φ S V
funcres2c.1 φ F : A S
Assertion funcres2c φ F C Func D G F C Func E G

Proof

Step Hyp Ref Expression
1 funcres2c.a A = Base C
2 funcres2c.e E = D 𝑠 S
3 funcres2c.d φ D Cat
4 funcres2c.r φ S V
5 funcres2c.1 φ F : A S
6 orc F C Func D G F C Func D G F C Func E G
7 6 a1i φ F C Func D G F C Func D G F C Func E G
8 olc F C Func E G F C Func D G F C Func E G
9 8 a1i φ F C Func E G F C Func D G F C Func E G
10 eqid Hom C = Hom C
11 eqid Base D = Base D
12 eqid Hom 𝑓 D = Hom 𝑓 D
13 inss2 S Base D Base D
14 13 a1i φ S Base D Base D
15 11 12 3 14 fullsubc φ Hom 𝑓 D S Base D × S Base D Subcat D
16 15 adantr φ F C Func D G F C Func E G Hom 𝑓 D S Base D × S Base D Subcat D
17 12 11 homffn Hom 𝑓 D Fn Base D × Base D
18 xpss12 S Base D Base D S Base D Base D S Base D × S Base D Base D × Base D
19 13 13 18 mp2an S Base D × S Base D Base D × Base D
20 fnssres Hom 𝑓 D Fn Base D × Base D S Base D × S Base D Base D × Base D Hom 𝑓 D S Base D × S Base D Fn S Base D × S Base D
21 17 19 20 mp2an Hom 𝑓 D S Base D × S Base D Fn S Base D × S Base D
22 21 a1i φ F C Func D G F C Func E G Hom 𝑓 D S Base D × S Base D Fn S Base D × S Base D
23 5 adantr φ F C Func D G F C Func E G F : A S
24 23 ffnd φ F C Func D G F C Func E G F Fn A
25 23 frnd φ F C Func D G F C Func E G ran F S
26 simpr φ F C Func D G F C Func D G
27 1 11 26 funcf1 φ F C Func D G F : A Base D
28 27 frnd φ F C Func D G ran F Base D
29 eqid Base E = Base E
30 simpr φ F C Func E G F C Func E G
31 1 29 30 funcf1 φ F C Func E G F : A Base E
32 31 frnd φ F C Func E G ran F Base E
33 2 11 ressbasss Base E Base D
34 32 33 sstrdi φ F C Func E G ran F Base D
35 28 34 jaodan φ F C Func D G F C Func E G ran F Base D
36 25 35 ssind φ F C Func D G F C Func E G ran F S Base D
37 df-f F : A S Base D F Fn A ran F S Base D
38 24 36 37 sylanbrc φ F C Func D G F C Func E G F : A S Base D
39 eqid Hom D = Hom D
40 simpr φ x A y A F C Func D G F C Func D G
41 simplrl φ x A y A F C Func D G x A
42 simplrr φ x A y A F C Func D G y A
43 1 10 39 40 41 42 funcf2 φ x A y A F C Func D G x G y : x Hom C y F x Hom D F y
44 eqid Hom E = Hom E
45 simpr φ x A y A F C Func E G F C Func E G
46 simplrl φ x A y A F C Func E G x A
47 simplrr φ x A y A F C Func E G y A
48 1 10 44 45 46 47 funcf2 φ x A y A F C Func E G x G y : x Hom C y F x Hom E F y
49 2 39 resshom S V Hom D = Hom E
50 4 49 syl φ Hom D = Hom E
51 50 ad2antrr φ x A y A F C Func E G Hom D = Hom E
52 51 oveqd φ x A y A F C Func E G F x Hom D F y = F x Hom E F y
53 52 feq3d φ x A y A F C Func E G x G y : x Hom C y F x Hom D F y x G y : x Hom C y F x Hom E F y
54 48 53 mpbird φ x A y A F C Func E G x G y : x Hom C y F x Hom D F y
55 43 54 jaodan φ x A y A F C Func D G F C Func E G x G y : x Hom C y F x Hom D F y
56 55 an32s φ F C Func D G F C Func E G x A y A x G y : x Hom C y F x Hom D F y
57 38 adantr φ F C Func D G F C Func E G x A y A F : A S Base D
58 simprl φ F C Func D G F C Func E G x A y A x A
59 57 58 ffvelrnd φ F C Func D G F C Func E G x A y A F x S Base D
60 simprr φ F C Func D G F C Func E G x A y A y A
61 57 60 ffvelrnd φ F C Func D G F C Func E G x A y A F y S Base D
62 59 61 ovresd φ F C Func D G F C Func E G x A y A F x Hom 𝑓 D S Base D × S Base D F y = F x Hom 𝑓 D F y
63 59 elin2d φ F C Func D G F C Func E G x A y A F x Base D
64 61 elin2d φ F C Func D G F C Func E G x A y A F y Base D
65 12 11 39 63 64 homfval φ F C Func D G F C Func E G x A y A F x Hom 𝑓 D F y = F x Hom D F y
66 62 65 eqtrd φ F C Func D G F C Func E G x A y A F x Hom 𝑓 D S Base D × S Base D F y = F x Hom D F y
67 66 feq3d φ F C Func D G F C Func E G x A y A x G y : x Hom C y F x Hom 𝑓 D S Base D × S Base D F y x G y : x Hom C y F x Hom D F y
68 56 67 mpbird φ F C Func D G F C Func E G x A y A x G y : x Hom C y F x Hom 𝑓 D S Base D × S Base D F y
69 1 10 16 22 38 68 funcres2b φ F C Func D G F C Func E G F C Func D G F C Func D cat Hom 𝑓 D S Base D × S Base D G
70 eqidd φ F C Func D G F C Func E G Hom 𝑓 C = Hom 𝑓 C
71 eqidd φ F C Func D G F C Func E G comp 𝑓 C = comp 𝑓 C
72 11 ressinbas S V D 𝑠 S = D 𝑠 S Base D
73 4 72 syl φ D 𝑠 S = D 𝑠 S Base D
74 2 73 eqtrid φ E = D 𝑠 S Base D
75 74 fveq2d φ Hom 𝑓 E = Hom 𝑓 D 𝑠 S Base D
76 eqid D 𝑠 S Base D = D 𝑠 S Base D
77 eqid D cat Hom 𝑓 D S Base D × S Base D = D cat Hom 𝑓 D S Base D × S Base D
78 11 12 3 14 76 77 fullresc φ Hom 𝑓 D 𝑠 S Base D = Hom 𝑓 D cat Hom 𝑓 D S Base D × S Base D comp 𝑓 D 𝑠 S Base D = comp 𝑓 D cat Hom 𝑓 D S Base D × S Base D
79 78 simpld φ Hom 𝑓 D 𝑠 S Base D = Hom 𝑓 D cat Hom 𝑓 D S Base D × S Base D
80 75 79 eqtrd φ Hom 𝑓 E = Hom 𝑓 D cat Hom 𝑓 D S Base D × S Base D
81 80 adantr φ F C Func D G F C Func E G Hom 𝑓 E = Hom 𝑓 D cat Hom 𝑓 D S Base D × S Base D
82 74 fveq2d φ comp 𝑓 E = comp 𝑓 D 𝑠 S Base D
83 78 simprd φ comp 𝑓 D 𝑠 S Base D = comp 𝑓 D cat Hom 𝑓 D S Base D × S Base D
84 82 83 eqtrd φ comp 𝑓 E = comp 𝑓 D cat Hom 𝑓 D S Base D × S Base D
85 84 adantr φ F C Func D G F C Func E G comp 𝑓 E = comp 𝑓 D cat Hom 𝑓 D S Base D × S Base D
86 df-br F C Func D G F G C Func D
87 funcrcl F G C Func D C Cat D Cat
88 86 87 sylbi F C Func D G C Cat D Cat
89 88 simpld F C Func D G C Cat
90 df-br F C Func E G F G C Func E
91 funcrcl F G C Func E C Cat E Cat
92 90 91 sylbi F C Func E G C Cat E Cat
93 92 simpld F C Func E G C Cat
94 89 93 jaoi F C Func D G F C Func E G C Cat
95 94 elexd F C Func D G F C Func E G C V
96 95 adantl φ F C Func D G F C Func E G C V
97 2 ovexi E V
98 97 a1i φ F C Func D G F C Func E G E V
99 ovexd φ F C Func D G F C Func E G D cat Hom 𝑓 D S Base D × S Base D V
100 70 71 81 85 96 96 98 99 funcpropd φ F C Func D G F C Func E G C Func E = C Func D cat Hom 𝑓 D S Base D × S Base D
101 100 breqd φ F C Func D G F C Func E G F C Func E G F C Func D cat Hom 𝑓 D S Base D × S Base D G
102 69 101 bitr4d φ F C Func D G F C Func E G F C Func D G F C Func E G
103 102 ex φ F C Func D G F C Func E G F C Func D G F C Func E G
104 7 9 103 pm5.21ndd φ F C Func D G F C Func E G