Step |
Hyp |
Ref |
Expression |
1 |
|
functhincfun.d |
|
2 |
|
functhincfun.e |
|
3 |
|
relfunc |
|
4 |
|
simprl |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
1
|
adantr |
|
10 |
2
|
adantr |
|
11 |
5 6 4
|
funcf1 |
|
12 |
|
eqid |
|
13 |
|
simplrl |
|
14 |
|
simprl |
|
15 |
|
simprr |
|
16 |
5 7 8 13 14 15
|
funcf2 |
|
17 |
16
|
f002 |
|
18 |
17
|
ralrimivva |
|
19 |
5 6 7 8 9 10 11 12 18
|
functhinc |
|
20 |
4 19
|
mpbid |
|
21 |
|
simprr |
|
22 |
5 6 7 8 9 10 11 12 18
|
functhinc |
|
23 |
21 22
|
mpbid |
|
24 |
20 23
|
eqtr4d |
|
25 |
24
|
ex |
|
26 |
25
|
alrimivv |
|
27 |
26
|
alrimiv |
|
28 |
|
dffun2 |
|
29 |
28
|
biimpri |
|
30 |
3 27 29
|
sylancr |
|