Metamath Proof Explorer


Theorem functhincfun

Description: A functor to a thin category is determined entirely by the object part. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses functhincfun.d φ C Cat
functhincfun.e φ D ThinCat
Assertion functhincfun φ Fun C Func D

Proof

Step Hyp Ref Expression
1 functhincfun.d φ C Cat
2 functhincfun.e φ D ThinCat
3 relfunc Rel C Func D
4 simprl φ f C Func D g f C Func D h f C Func D g
5 eqid Base C = Base C
6 eqid Base D = Base D
7 eqid Hom C = Hom C
8 eqid Hom D = Hom D
9 1 adantr φ f C Func D g f C Func D h C Cat
10 2 adantr φ f C Func D g f C Func D h D ThinCat
11 5 6 4 funcf1 φ f C Func D g f C Func D h f : Base C Base D
12 eqid x Base C , y Base C x Hom C y × f x Hom D f y = x Base C , y Base C x Hom C y × f x Hom D f y
13 simplrl φ f C Func D g f C Func D h x Base C y Base C f C Func D g
14 simprl φ f C Func D g f C Func D h x Base C y Base C x Base C
15 simprr φ f C Func D g f C Func D h x Base C y Base C y Base C
16 5 7 8 13 14 15 funcf2 φ f C Func D g f C Func D h x Base C y Base C x g y : x Hom C y f x Hom D f y
17 16 f002 φ f C Func D g f C Func D h x Base C y Base C f x Hom D f y = x Hom C y =
18 17 ralrimivva φ f C Func D g f C Func D h x Base C y Base C f x Hom D f y = x Hom C y =
19 5 6 7 8 9 10 11 12 18 functhinc φ f C Func D g f C Func D h f C Func D g g = x Base C , y Base C x Hom C y × f x Hom D f y
20 4 19 mpbid φ f C Func D g f C Func D h g = x Base C , y Base C x Hom C y × f x Hom D f y
21 simprr φ f C Func D g f C Func D h f C Func D h
22 5 6 7 8 9 10 11 12 18 functhinc φ f C Func D g f C Func D h f C Func D h h = x Base C , y Base C x Hom C y × f x Hom D f y
23 21 22 mpbid φ f C Func D g f C Func D h h = x Base C , y Base C x Hom C y × f x Hom D f y
24 20 23 eqtr4d φ f C Func D g f C Func D h g = h
25 24 ex φ f C Func D g f C Func D h g = h
26 25 alrimivv φ g h f C Func D g f C Func D h g = h
27 26 alrimiv φ f g h f C Func D g f C Func D h g = h
28 dffun2 Fun C Func D Rel C Func D f g h f C Func D g f C Func D h g = h
29 28 biimpri Rel C Func D f g h f C Func D g f C Func D h g = h Fun C Func D
30 3 27 29 sylancr φ Fun C Func D