Metamath Proof Explorer


Theorem functhinclem1

Description: Lemma for functhinc . Given the object part, there is only one possible morphism part such that the mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Hypotheses functhinclem1.b B = Base D
functhinclem1.c C = Base E
functhinclem1.h H = Hom D
functhinclem1.j J = Hom E
functhinclem1.e No typesetting found for |- ( ph -> E e. ThinCat ) with typecode |-
functhinclem1.f φ F : B C
functhinclem1.k K = x B , y B x H y × F x J F y
functhinclem1.1 φ z B w B F z J F w = z H w =
Assertion functhinclem1 φ G V G Fn B × B z B w B z G w : z H w F z J F w G = K

Proof

Step Hyp Ref Expression
1 functhinclem1.b B = Base D
2 functhinclem1.c C = Base E
3 functhinclem1.h H = Hom D
4 functhinclem1.j J = Hom E
5 functhinclem1.e Could not format ( ph -> E e. ThinCat ) : No typesetting found for |- ( ph -> E e. ThinCat ) with typecode |-
6 functhinclem1.f φ F : B C
7 functhinclem1.k K = x B , y B x H y × F x J F y
8 functhinclem1.1 φ z B w B F z J F w = z H w =
9 simpl φ G V G Fn B × B z B w B z G w : z H w F z J F w φ
10 simpr2 φ G V G Fn B × B z B w B z G w : z H w F z J F w G Fn B × B
11 simpr3 φ G V G Fn B × B z B w B z G w : z H w F z J F w z B w B z G w : z H w F z J F w
12 eqid z H w × F z J F w = z H w × F z J F w
13 8 adantlr φ G Fn B × B z B w B F z J F w = z H w =
14 5 ad2antrr Could not format ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> E e. ThinCat ) : No typesetting found for |- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> E e. ThinCat ) with typecode |-
15 6 ad2antrr φ G Fn B × B z B w B F : B C
16 simprl φ G Fn B × B z B w B z B
17 15 16 ffvelrnd φ G Fn B × B z B w B F z C
18 simprr φ G Fn B × B z B w B w B
19 15 18 ffvelrnd φ G Fn B × B z B w B F w C
20 14 17 19 2 4 thincmo φ G Fn B × B z B w B * m m F z J F w
21 12 13 20 mofeu φ G Fn B × B z B w B z G w : z H w F z J F w z G w = z H w × F z J F w
22 oveq1 x = z x H y = z H y
23 fveq2 x = z F x = F z
24 23 oveq1d x = z F x J F y = F z J F y
25 22 24 xpeq12d x = z x H y × F x J F y = z H y × F z J F y
26 oveq2 y = w z H y = z H w
27 fveq2 y = w F y = F w
28 27 oveq2d y = w F z J F y = F z J F w
29 26 28 xpeq12d y = w z H y × F z J F y = z H w × F z J F w
30 ovex z H w V
31 ovex F z J F w V
32 30 31 xpex z H w × F z J F w V
33 25 29 7 32 ovmpo z B w B z K w = z H w × F z J F w
34 33 adantl φ G Fn B × B z B w B z K w = z H w × F z J F w
35 34 eqeq2d φ G Fn B × B z B w B z G w = z K w z G w = z H w × F z J F w
36 21 35 bitr4d φ G Fn B × B z B w B z G w : z H w F z J F w z G w = z K w
37 36 2ralbidva φ G Fn B × B z B w B z G w : z H w F z J F w z B w B z G w = z K w
38 simpr φ G Fn B × B G Fn B × B
39 ovex x H y V
40 ovex F x J F y V
41 39 40 xpex x H y × F x J F y V
42 7 41 fnmpoi K Fn B × B
43 eqfnov2 G Fn B × B K Fn B × B G = K z B w B z G w = z K w
44 38 42 43 sylancl φ G Fn B × B G = K z B w B z G w = z K w
45 37 44 bitr4d φ G Fn B × B z B w B z G w : z H w F z J F w G = K
46 45 biimpa φ G Fn B × B z B w B z G w : z H w F z J F w G = K
47 9 10 11 46 syl21anc φ G V G Fn B × B z B w B z G w : z H w F z J F w G = K
48 1 fvexi B V
49 48 48 mpoex x B , y B x H y × F x J F y V
50 7 49 eqeltri K V
51 eleq1 G = K G V K V
52 50 51 mpbiri G = K G V
53 52 adantl φ G = K G V
54 fneq1 G = K G Fn B × B K Fn B × B
55 42 54 mpbiri G = K G Fn B × B
56 55 adantl φ G = K G Fn B × B
57 simpl φ G = K φ
58 simpr φ G = K G = K
59 45 biimpar φ G Fn B × B G = K z B w B z G w : z H w F z J F w
60 57 56 58 59 syl21anc φ G = K z B w B z G w : z H w F z J F w
61 53 56 60 3jca φ G = K G V G Fn B × B z B w B z G w : z H w F z J F w
62 47 61 impbida φ G V G Fn B × B z B w B z G w : z H w F z J F w G = K