Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Examples of categories
Thin categories
functhinclem2
Next ⟩
functhinclem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
functhinclem2
Description:
Lemma for
functhinc
.
(Contributed by
Zhi Wang
, 1-Oct-2024)
Ref
Expression
Hypotheses
functhinclem2.x
⊢
φ
→
X
∈
B
functhinclem2.y
⊢
φ
→
Y
∈
B
functhinclem2.1
⊢
φ
→
∀
x
∈
B
∀
y
∈
B
F
⁡
x
J
F
⁡
y
=
∅
→
x
H
y
=
∅
Assertion
functhinclem2
⊢
φ
→
F
⁡
X
J
F
⁡
Y
=
∅
→
X
H
Y
=
∅
Proof
Step
Hyp
Ref
Expression
1
functhinclem2.x
⊢
φ
→
X
∈
B
2
functhinclem2.y
⊢
φ
→
Y
∈
B
3
functhinclem2.1
⊢
φ
→
∀
x
∈
B
∀
y
∈
B
F
⁡
x
J
F
⁡
y
=
∅
→
x
H
y
=
∅
4
simpl
⊢
x
=
X
∧
y
=
Y
→
x
=
X
5
4
fveq2d
⊢
x
=
X
∧
y
=
Y
→
F
⁡
x
=
F
⁡
X
6
simpr
⊢
x
=
X
∧
y
=
Y
→
y
=
Y
7
6
fveq2d
⊢
x
=
X
∧
y
=
Y
→
F
⁡
y
=
F
⁡
Y
8
5
7
oveq12d
⊢
x
=
X
∧
y
=
Y
→
F
⁡
x
J
F
⁡
y
=
F
⁡
X
J
F
⁡
Y
9
8
eqeq1d
⊢
x
=
X
∧
y
=
Y
→
F
⁡
x
J
F
⁡
y
=
∅
↔
F
⁡
X
J
F
⁡
Y
=
∅
10
oveq12
⊢
x
=
X
∧
y
=
Y
→
x
H
y
=
X
H
Y
11
10
eqeq1d
⊢
x
=
X
∧
y
=
Y
→
x
H
y
=
∅
↔
X
H
Y
=
∅
12
9
11
imbi12d
⊢
x
=
X
∧
y
=
Y
→
F
⁡
x
J
F
⁡
y
=
∅
→
x
H
y
=
∅
↔
F
⁡
X
J
F
⁡
Y
=
∅
→
X
H
Y
=
∅
13
12
rspc2gv
⊢
X
∈
B
∧
Y
∈
B
→
∀
x
∈
B
∀
y
∈
B
F
⁡
x
J
F
⁡
y
=
∅
→
x
H
y
=
∅
→
F
⁡
X
J
F
⁡
Y
=
∅
→
X
H
Y
=
∅
14
13
imp
⊢
X
∈
B
∧
Y
∈
B
∧
∀
x
∈
B
∀
y
∈
B
F
⁡
x
J
F
⁡
y
=
∅
→
x
H
y
=
∅
→
F
⁡
X
J
F
⁡
Y
=
∅
→
X
H
Y
=
∅
15
1
2
3
14
syl21anc
⊢
φ
→
F
⁡
X
J
F
⁡
Y
=
∅
→
X
H
Y
=
∅