Metamath Proof Explorer


Theorem functhinclem4

Description: Lemma for functhinc . Other requirements on the morphism part are automatically satisfied. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Hypotheses functhinc.b B = Base D
functhinc.c C = Base E
functhinc.h H = Hom D
functhinc.j J = Hom E
functhinc.d φ D Cat
functhinc.e No typesetting found for |- ( ph -> E e. ThinCat ) with typecode |-
functhinc.f φ F : B C
functhinc.k K = x B , y B x H y × F x J F y
functhinc.1 φ z B w B F z J F w = z H w =
functhinclem4.1 1 ˙ = Id D
functhinclem4.i I = Id E
functhinclem4.x · ˙ = comp D
functhinclem4.o O = comp E
Assertion functhinclem4 φ G = K a B a G a 1 ˙ a = I F a b B c B m a H b n b H c a G c n a b · ˙ c m = b G c n F a F b O F c a G b m

Proof

Step Hyp Ref Expression
1 functhinc.b B = Base D
2 functhinc.c C = Base E
3 functhinc.h H = Hom D
4 functhinc.j J = Hom E
5 functhinc.d φ D Cat
6 functhinc.e Could not format ( ph -> E e. ThinCat ) : No typesetting found for |- ( ph -> E e. ThinCat ) with typecode |-
7 functhinc.f φ F : B C
8 functhinc.k K = x B , y B x H y × F x J F y
9 functhinc.1 φ z B w B F z J F w = z H w =
10 functhinclem4.1 1 ˙ = Id D
11 functhinclem4.i I = Id E
12 functhinclem4.x · ˙ = comp D
13 functhinclem4.o O = comp E
14 6 ad2antrr Could not format ( ( ( ph /\ G = K ) /\ a e. B ) -> E e. ThinCat ) : No typesetting found for |- ( ( ( ph /\ G = K ) /\ a e. B ) -> E e. ThinCat ) with typecode |-
15 7 adantr φ G = K F : B C
16 15 ffvelrnda φ G = K a B F a C
17 simpr φ G = K a B a B
18 5 ad2antrr φ G = K a B D Cat
19 1 3 10 18 17 catidcl φ G = K a B 1 ˙ a a H a
20 simplr φ G = K a B G = K
21 oveq1 x = v x H y = v H y
22 fveq2 x = v F x = F v
23 22 oveq1d x = v F x J F y = F v J F y
24 21 23 xpeq12d x = v x H y × F x J F y = v H y × F v J F y
25 oveq2 y = u v H y = v H u
26 fveq2 y = u F y = F u
27 26 oveq2d y = u F v J F y = F v J F u
28 25 27 xpeq12d y = u v H y × F v J F y = v H u × F v J F u
29 24 28 cbvmpov x B , y B x H y × F x J F y = v B , u B v H u × F v J F u
30 8 29 eqtri K = v B , u B v H u × F v J F u
31 20 30 eqtrdi φ G = K a B G = v B , u B v H u × F v J F u
32 9 ad2antrr φ G = K a B z B w B F z J F w = z H w =
33 17 17 32 functhinclem2 φ G = K a B F a J F a = a H a =
34 14 16 16 2 4 thincmo φ G = K a B * p p F a J F a
35 17 17 19 31 33 34 functhinclem3 φ G = K a B a G a 1 ˙ a F a J F a
36 14 2 4 16 11 35 thincid φ G = K a B a G a 1 ˙ a = I F a
37 16 ad2antrr φ G = K a B b B c B m a H b n b H c F a C
38 7 ad4antr φ G = K a B b B c B m a H b n b H c F : B C
39 simplrr φ G = K a B b B c B m a H b n b H c c B
40 38 39 ffvelrnd φ G = K a B b B c B m a H b n b H c F c C
41 17 ad2antrr φ G = K a B b B c B m a H b n b H c a B
42 5 ad4antr φ G = K a B b B c B m a H b n b H c D Cat
43 simplrl φ G = K a B b B c B m a H b n b H c b B
44 simprl φ G = K a B b B c B m a H b n b H c m a H b
45 simprr φ G = K a B b B c B m a H b n b H c n b H c
46 1 3 12 42 41 43 39 44 45 catcocl φ G = K a B b B c B m a H b n b H c n a b · ˙ c m a H c
47 31 ad2antrr φ G = K a B b B c B m a H b n b H c G = v B , u B v H u × F v J F u
48 9 ad4antr φ G = K a B b B c B m a H b n b H c z B w B F z J F w = z H w =
49 41 39 48 functhinclem2 φ G = K a B b B c B m a H b n b H c F a J F c = a H c =
50 6 ad4antr Could not format ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> E e. ThinCat ) : No typesetting found for |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> E e. ThinCat ) with typecode |-
51 50 37 40 2 4 thincmo φ G = K a B b B c B m a H b n b H c * p p F a J F c
52 41 39 46 47 49 51 functhinclem3 φ G = K a B b B c B m a H b n b H c a G c n a b · ˙ c m F a J F c
53 14 thinccd φ G = K a B E Cat
54 53 ad2antrr φ G = K a B b B c B m a H b n b H c E Cat
55 38 43 ffvelrnd φ G = K a B b B c B m a H b n b H c F b C
56 41 43 48 functhinclem2 φ G = K a B b B c B m a H b n b H c F a J F b = a H b =
57 50 37 55 2 4 thincmo φ G = K a B b B c B m a H b n b H c * p p F a J F b
58 41 43 44 47 56 57 functhinclem3 φ G = K a B b B c B m a H b n b H c a G b m F a J F b
59 43 39 48 functhinclem2 φ G = K a B b B c B m a H b n b H c F b J F c = b H c =
60 50 55 40 2 4 thincmo φ G = K a B b B c B m a H b n b H c * p p F b J F c
61 43 39 45 47 59 60 functhinclem3 φ G = K a B b B c B m a H b n b H c b G c n F b J F c
62 2 4 13 54 37 55 40 58 61 catcocl φ G = K a B b B c B m a H b n b H c b G c n F a F b O F c a G b m F a J F c
63 37 40 52 62 2 4 50 thincmo2 φ G = K a B b B c B m a H b n b H c a G c n a b · ˙ c m = b G c n F a F b O F c a G b m
64 63 ralrimivva φ G = K a B b B c B m a H b n b H c a G c n a b · ˙ c m = b G c n F a F b O F c a G b m
65 64 ralrimivva φ G = K a B b B c B m a H b n b H c a G c n a b · ˙ c m = b G c n F a F b O F c a G b m
66 36 65 jca φ G = K a B a G a 1 ˙ a = I F a b B c B m a H b n b H c a G c n a b · ˙ c m = b G c n F a F b O F c a G b m
67 66 ralrimiva φ G = K a B a G a 1 ˙ a = I F a b B c B m a H b n b H c a G c n a b · ˙ c m = b G c n F a F b O F c a G b m