Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fundif
Next ⟩
funcnvsn
Metamath Proof Explorer
Ascii
Unicode
Theorem
fundif
Description:
A function with removed elements is still a function.
(Contributed by
AV
, 7-Jun-2021)
Ref
Expression
Assertion
fundif
⊢
Fun
⁡
F
→
Fun
⁡
F
∖
A
Proof
Step
Hyp
Ref
Expression
1
reldif
⊢
Rel
⁡
F
→
Rel
⁡
F
∖
A
2
brdif
⊢
x
F
∖
A
y
↔
x
F
y
∧
¬
x
A
y
3
brdif
⊢
x
F
∖
A
z
↔
x
F
z
∧
¬
x
A
z
4
pm2.27
⊢
x
F
y
∧
x
F
z
→
x
F
y
∧
x
F
z
→
y
=
z
→
y
=
z
5
4
ad2ant2r
⊢
x
F
y
∧
¬
x
A
y
∧
x
F
z
∧
¬
x
A
z
→
x
F
y
∧
x
F
z
→
y
=
z
→
y
=
z
6
2
3
5
syl2anb
⊢
x
F
∖
A
y
∧
x
F
∖
A
z
→
x
F
y
∧
x
F
z
→
y
=
z
→
y
=
z
7
6
com12
⊢
x
F
y
∧
x
F
z
→
y
=
z
→
x
F
∖
A
y
∧
x
F
∖
A
z
→
y
=
z
8
7
alimi
⊢
∀
z
x
F
y
∧
x
F
z
→
y
=
z
→
∀
z
x
F
∖
A
y
∧
x
F
∖
A
z
→
y
=
z
9
8
2alimi
⊢
∀
x
∀
y
∀
z
x
F
y
∧
x
F
z
→
y
=
z
→
∀
x
∀
y
∀
z
x
F
∖
A
y
∧
x
F
∖
A
z
→
y
=
z
10
1
9
anim12i
⊢
Rel
⁡
F
∧
∀
x
∀
y
∀
z
x
F
y
∧
x
F
z
→
y
=
z
→
Rel
⁡
F
∖
A
∧
∀
x
∀
y
∀
z
x
F
∖
A
y
∧
x
F
∖
A
z
→
y
=
z
11
dffun2
⊢
Fun
⁡
F
↔
Rel
⁡
F
∧
∀
x
∀
y
∀
z
x
F
y
∧
x
F
z
→
y
=
z
12
dffun2
⊢
Fun
⁡
F
∖
A
↔
Rel
⁡
F
∖
A
∧
∀
x
∀
y
∀
z
x
F
∖
A
y
∧
x
F
∖
A
z
→
y
=
z
13
10
11
12
3imtr4i
⊢
Fun
⁡
F
→
Fun
⁡
F
∖
A