Metamath Proof Explorer


Theorem funeldmdif

Description: Two ways of expressing membership in the difference of domains of two nested functions. (Contributed by AV, 27-Oct-2023)

Ref Expression
Assertion funeldmdif Fun A B A C dom A dom B x A B 1 st x = C

Proof

Step Hyp Ref Expression
1 funrel Fun A Rel A
2 releldmdifi Rel A B A C dom A dom B x A B 1 st x = C
3 1 2 sylan Fun A B A C dom A dom B x A B 1 st x = C
4 eldif x A B x A ¬ x B
5 1stdm Rel A x A 1 st x dom A
6 5 ex Rel A x A 1 st x dom A
7 1 6 syl Fun A x A 1 st x dom A
8 7 adantr Fun A B A x A 1 st x dom A
9 8 com12 x A Fun A B A 1 st x dom A
10 9 adantr x A ¬ x B Fun A B A 1 st x dom A
11 10 impcom Fun A B A x A ¬ x B 1 st x dom A
12 funelss Fun A B A x A 1 st x dom B x B
13 12 3expa Fun A B A x A 1 st x dom B x B
14 13 con3d Fun A B A x A ¬ x B ¬ 1 st x dom B
15 14 impr Fun A B A x A ¬ x B ¬ 1 st x dom B
16 11 15 eldifd Fun A B A x A ¬ x B 1 st x dom A dom B
17 16 3adant3 Fun A B A x A ¬ x B 1 st x = C 1 st x dom A dom B
18 eleq1 1 st x = C 1 st x dom A dom B C dom A dom B
19 18 3ad2ant3 Fun A B A x A ¬ x B 1 st x = C 1 st x dom A dom B C dom A dom B
20 17 19 mpbid Fun A B A x A ¬ x B 1 st x = C C dom A dom B
21 20 3exp Fun A B A x A ¬ x B 1 st x = C C dom A dom B
22 4 21 syl5bi Fun A B A x A B 1 st x = C C dom A dom B
23 22 rexlimdv Fun A B A x A B 1 st x = C C dom A dom B
24 3 23 impbid Fun A B A C dom A dom B x A B 1 st x = C