Description: If the first component of an element of a function is in the domain of a subset of the function, the element is a member of this subset. (Contributed by AV, 27-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | funelss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel | |
|
2 | 1st2nd | |
|
3 | 1 2 | sylan | |
4 | simpl1l | |
|
5 | simpl3 | |
|
6 | simpr | |
|
7 | funssfv | |
|
8 | 4 5 6 7 | syl3anc | |
9 | eleq1 | |
|
10 | 9 | adantl | |
11 | funopfv | |
|
12 | 11 | adantr | |
13 | 10 12 | sylbid | |
14 | 13 | impancom | |
15 | 14 | imp | |
16 | 15 | 3adant3 | |
17 | 16 | adantr | |
18 | 8 17 | eqtr3d | |
19 | funss | |
|
20 | 19 | com12 | |
21 | 20 | adantr | |
22 | 21 | imp | |
23 | 22 | funfnd | |
24 | 23 | 3adant2 | |
25 | fnopfvb | |
|
26 | 24 25 | sylan | |
27 | 18 26 | mpbid | |
28 | eleq1 | |
|
29 | 28 | 3ad2ant2 | |
30 | 29 | adantr | |
31 | 27 30 | mpbird | |
32 | 31 | 3exp1 | |
33 | 3 32 | mpd | |
34 | 33 | ex | |
35 | 34 | com23 | |
36 | 35 | 3imp | |