Metamath Proof Explorer


Theorem funelss

Description: If the first component of an element of a function is in the domain of a subset of the function, the element is a member of this subset. (Contributed by AV, 27-Oct-2023)

Ref Expression
Assertion funelss FunABAXA1stXdomBXB

Proof

Step Hyp Ref Expression
1 funrel FunARelA
2 1st2nd RelAXAX=1stX2ndX
3 1 2 sylan FunAXAX=1stX2ndX
4 simpl1l FunAXAX=1stX2ndXBA1stXdomBFunA
5 simpl3 FunAXAX=1stX2ndXBA1stXdomBBA
6 simpr FunAXAX=1stX2ndXBA1stXdomB1stXdomB
7 funssfv FunABA1stXdomBA1stX=B1stX
8 4 5 6 7 syl3anc FunAXAX=1stX2ndXBA1stXdomBA1stX=B1stX
9 eleq1 X=1stX2ndXXA1stX2ndXA
10 9 adantl FunAX=1stX2ndXXA1stX2ndXA
11 funopfv FunA1stX2ndXAA1stX=2ndX
12 11 adantr FunAX=1stX2ndX1stX2ndXAA1stX=2ndX
13 10 12 sylbid FunAX=1stX2ndXXAA1stX=2ndX
14 13 impancom FunAXAX=1stX2ndXA1stX=2ndX
15 14 imp FunAXAX=1stX2ndXA1stX=2ndX
16 15 3adant3 FunAXAX=1stX2ndXBAA1stX=2ndX
17 16 adantr FunAXAX=1stX2ndXBA1stXdomBA1stX=2ndX
18 8 17 eqtr3d FunAXAX=1stX2ndXBA1stXdomBB1stX=2ndX
19 funss BAFunAFunB
20 19 com12 FunABAFunB
21 20 adantr FunAXABAFunB
22 21 imp FunAXABAFunB
23 22 funfnd FunAXABABFndomB
24 23 3adant2 FunAXAX=1stX2ndXBABFndomB
25 fnopfvb BFndomB1stXdomBB1stX=2ndX1stX2ndXB
26 24 25 sylan FunAXAX=1stX2ndXBA1stXdomBB1stX=2ndX1stX2ndXB
27 18 26 mpbid FunAXAX=1stX2ndXBA1stXdomB1stX2ndXB
28 eleq1 X=1stX2ndXXB1stX2ndXB
29 28 3ad2ant2 FunAXAX=1stX2ndXBAXB1stX2ndXB
30 29 adantr FunAXAX=1stX2ndXBA1stXdomBXB1stX2ndXB
31 27 30 mpbird FunAXAX=1stX2ndXBA1stXdomBXB
32 31 3exp1 FunAXAX=1stX2ndXBA1stXdomBXB
33 3 32 mpd FunAXABA1stXdomBXB
34 33 ex FunAXABA1stXdomBXB
35 34 com23 FunABAXA1stXdomBXB
36 35 3imp FunABAXA1stXdomBXB