Metamath Proof Explorer


Theorem funelss

Description: If the first component of an element of a function is in the domain of a subset of the function, the element is a member of this subset. (Contributed by AV, 27-Oct-2023)

Ref Expression
Assertion funelss Fun A B A X A 1 st X dom B X B

Proof

Step Hyp Ref Expression
1 funrel Fun A Rel A
2 1st2nd Rel A X A X = 1 st X 2 nd X
3 1 2 sylan Fun A X A X = 1 st X 2 nd X
4 simpl1l Fun A X A X = 1 st X 2 nd X B A 1 st X dom B Fun A
5 simpl3 Fun A X A X = 1 st X 2 nd X B A 1 st X dom B B A
6 simpr Fun A X A X = 1 st X 2 nd X B A 1 st X dom B 1 st X dom B
7 funssfv Fun A B A 1 st X dom B A 1 st X = B 1 st X
8 4 5 6 7 syl3anc Fun A X A X = 1 st X 2 nd X B A 1 st X dom B A 1 st X = B 1 st X
9 eleq1 X = 1 st X 2 nd X X A 1 st X 2 nd X A
10 9 adantl Fun A X = 1 st X 2 nd X X A 1 st X 2 nd X A
11 funopfv Fun A 1 st X 2 nd X A A 1 st X = 2 nd X
12 11 adantr Fun A X = 1 st X 2 nd X 1 st X 2 nd X A A 1 st X = 2 nd X
13 10 12 sylbid Fun A X = 1 st X 2 nd X X A A 1 st X = 2 nd X
14 13 impancom Fun A X A X = 1 st X 2 nd X A 1 st X = 2 nd X
15 14 imp Fun A X A X = 1 st X 2 nd X A 1 st X = 2 nd X
16 15 3adant3 Fun A X A X = 1 st X 2 nd X B A A 1 st X = 2 nd X
17 16 adantr Fun A X A X = 1 st X 2 nd X B A 1 st X dom B A 1 st X = 2 nd X
18 8 17 eqtr3d Fun A X A X = 1 st X 2 nd X B A 1 st X dom B B 1 st X = 2 nd X
19 funss B A Fun A Fun B
20 19 com12 Fun A B A Fun B
21 20 adantr Fun A X A B A Fun B
22 21 imp Fun A X A B A Fun B
23 22 funfnd Fun A X A B A B Fn dom B
24 23 3adant2 Fun A X A X = 1 st X 2 nd X B A B Fn dom B
25 fnopfvb B Fn dom B 1 st X dom B B 1 st X = 2 nd X 1 st X 2 nd X B
26 24 25 sylan Fun A X A X = 1 st X 2 nd X B A 1 st X dom B B 1 st X = 2 nd X 1 st X 2 nd X B
27 18 26 mpbid Fun A X A X = 1 st X 2 nd X B A 1 st X dom B 1 st X 2 nd X B
28 eleq1 X = 1 st X 2 nd X X B 1 st X 2 nd X B
29 28 3ad2ant2 Fun A X A X = 1 st X 2 nd X B A X B 1 st X 2 nd X B
30 29 adantr Fun A X A X = 1 st X 2 nd X B A 1 st X dom B X B 1 st X 2 nd X B
31 27 30 mpbird Fun A X A X = 1 st X 2 nd X B A 1 st X dom B X B
32 31 3exp1 Fun A X A X = 1 st X 2 nd X B A 1 st X dom B X B
33 3 32 mpd Fun A X A B A 1 st X dom B X B
34 33 ex Fun A X A B A 1 st X dom B X B
35 34 com23 Fun A B A X A 1 st X dom B X B
36 35 3imp Fun A B A X A 1 st X dom B X B