Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
funeq
Next ⟩
funeqi
Metamath Proof Explorer
Ascii
Unicode
Theorem
funeq
Description:
Equality theorem for function predicate.
(Contributed by
NM
, 16-Aug-1994)
Ref
Expression
Assertion
funeq
⊢
A
=
B
→
Fun
⁡
A
↔
Fun
⁡
B
Proof
Step
Hyp
Ref
Expression
1
eqimss2
⊢
A
=
B
→
B
⊆
A
2
funss
⊢
B
⊆
A
→
Fun
⁡
A
→
Fun
⁡
B
3
1
2
syl
⊢
A
=
B
→
Fun
⁡
A
→
Fun
⁡
B
4
eqimss
⊢
A
=
B
→
A
⊆
B
5
funss
⊢
A
⊆
B
→
Fun
⁡
B
→
Fun
⁡
A
6
4
5
syl
⊢
A
=
B
→
Fun
⁡
B
→
Fun
⁡
A
7
3
6
impbid
⊢
A
=
B
→
Fun
⁡
A
↔
Fun
⁡
B