Metamath Proof Explorer


Theorem funeu2

Description: There is exactly one value of a function. (Contributed by NM, 3-Aug-1994)

Ref Expression
Assertion funeu2 FunFABF∃!yAyF

Proof

Step Hyp Ref Expression
1 df-br AFBABF
2 funeu FunFAFB∃!yAFy
3 df-br AFyAyF
4 3 eubii ∃!yAFy∃!yAyF
5 2 4 sylib FunFAFB∃!yAyF
6 1 5 sylan2br FunFABF∃!yAyF