Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
funfni
Next ⟩
fndmu
Metamath Proof Explorer
Ascii
Unicode
Theorem
funfni
Description:
Inference to convert a function and domain antecedent.
(Contributed by
NM
, 22-Apr-2004)
Ref
Expression
Hypothesis
funfni.1
⊢
Fun
⁡
F
∧
B
∈
dom
⁡
F
→
φ
Assertion
funfni
⊢
F
Fn
A
∧
B
∈
A
→
φ
Proof
Step
Hyp
Ref
Expression
1
funfni.1
⊢
Fun
⁡
F
∧
B
∈
dom
⁡
F
→
φ
2
fnfun
⊢
F
Fn
A
→
Fun
⁡
F
3
fndm
⊢
F
Fn
A
→
dom
⁡
F
=
A
4
3
eleq2d
⊢
F
Fn
A
→
B
∈
dom
⁡
F
↔
B
∈
A
5
4
biimpar
⊢
F
Fn
A
∧
B
∈
A
→
B
∈
dom
⁡
F
6
2
5
1
syl2an2r
⊢
F
Fn
A
∧
B
∈
A
→
φ