Metamath Proof Explorer


Theorem funfni

Description: Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004)

Ref Expression
Hypothesis funfni.1 Fun F B dom F φ
Assertion funfni F Fn A B A φ

Proof

Step Hyp Ref Expression
1 funfni.1 Fun F B dom F φ
2 fnfun F Fn A Fun F
3 fndm F Fn A dom F = A
4 3 eleq2d F Fn A B dom F B A
5 4 biimpar F Fn A B A B dom F
6 2 5 1 syl2an2r F Fn A B A φ