Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
funforn
Next ⟩
fodmrnu
Metamath Proof Explorer
Ascii
Unicode
Theorem
funforn
Description:
A function maps its domain onto its range.
(Contributed by
NM
, 23-Jul-2004)
Ref
Expression
Assertion
funforn
⊢
Fun
⁡
A
↔
A
:
dom
⁡
A
⟶
onto
ran
⁡
A
Proof
Step
Hyp
Ref
Expression
1
funfn
⊢
Fun
⁡
A
↔
A
Fn
dom
⁡
A
2
dffn4
⊢
A
Fn
dom
⁡
A
↔
A
:
dom
⁡
A
⟶
onto
ran
⁡
A
3
1
2
bitri
⊢
Fun
⁡
A
↔
A
:
dom
⁡
A
⟶
onto
ran
⁡
A