Metamath Proof Explorer


Theorem funfv2f

Description: The value of a function. Version of funfv2 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 19-Feb-2006)

Ref Expression
Hypotheses funfv2f.1 _ y A
funfv2f.2 _ y F
Assertion funfv2f Fun F F A = y | A F y

Proof

Step Hyp Ref Expression
1 funfv2f.1 _ y A
2 funfv2f.2 _ y F
3 funfv2 Fun F F A = w | A F w
4 nfcv _ y w
5 1 2 4 nfbr y A F w
6 nfv w A F y
7 breq2 w = y A F w A F y
8 5 6 7 cbvabw w | A F w = y | A F y
9 8 unieqi w | A F w = y | A F y
10 3 9 eqtrdi Fun F F A = y | A F y