Metamath Proof Explorer


Theorem funfvbrb

Description: Two ways to say that A is in the domain of F . (Contributed by Mario Carneiro, 1-May-2014)

Ref Expression
Assertion funfvbrb Fun F A dom F A F F A

Proof

Step Hyp Ref Expression
1 funfvop Fun F A dom F A F A F
2 df-br A F F A A F A F
3 1 2 sylibr Fun F A dom F A F F A
4 funrel Fun F Rel F
5 releldm Rel F A F F A A dom F
6 4 5 sylan Fun F A F F A A dom F
7 3 6 impbida Fun F A dom F A F F A