Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
funfvima
Next ⟩
funfvima2
Metamath Proof Explorer
Ascii
Unicode
Theorem
funfvima
Description:
A function's value in a preimage belongs to the image.
(Contributed by
NM
, 23-Sep-2003)
Ref
Expression
Assertion
funfvima
⊢
Fun
⁡
F
∧
B
∈
dom
⁡
F
→
B
∈
A
→
F
⁡
B
∈
F
A
Proof
Step
Hyp
Ref
Expression
1
dmres
⊢
dom
⁡
F
↾
A
=
A
∩
dom
⁡
F
2
1
elin2
⊢
B
∈
dom
⁡
F
↾
A
↔
B
∈
A
∧
B
∈
dom
⁡
F
3
funres
⊢
Fun
⁡
F
→
Fun
⁡
F
↾
A
4
fvelrn
⊢
Fun
⁡
F
↾
A
∧
B
∈
dom
⁡
F
↾
A
→
F
↾
A
⁡
B
∈
ran
⁡
F
↾
A
5
3
4
sylan
⊢
Fun
⁡
F
∧
B
∈
dom
⁡
F
↾
A
→
F
↾
A
⁡
B
∈
ran
⁡
F
↾
A
6
df-ima
⊢
F
A
=
ran
⁡
F
↾
A
7
6
eleq2i
⊢
F
⁡
B
∈
F
A
↔
F
⁡
B
∈
ran
⁡
F
↾
A
8
fvres
⊢
B
∈
A
→
F
↾
A
⁡
B
=
F
⁡
B
9
8
eleq1d
⊢
B
∈
A
→
F
↾
A
⁡
B
∈
ran
⁡
F
↾
A
↔
F
⁡
B
∈
ran
⁡
F
↾
A
10
7
9
bitr4id
⊢
B
∈
A
→
F
⁡
B
∈
F
A
↔
F
↾
A
⁡
B
∈
ran
⁡
F
↾
A
11
5
10
syl5ibrcom
⊢
Fun
⁡
F
∧
B
∈
dom
⁡
F
↾
A
→
B
∈
A
→
F
⁡
B
∈
F
A
12
11
ex
⊢
Fun
⁡
F
→
B
∈
dom
⁡
F
↾
A
→
B
∈
A
→
F
⁡
B
∈
F
A
13
2
12
syl5bir
⊢
Fun
⁡
F
→
B
∈
A
∧
B
∈
dom
⁡
F
→
B
∈
A
→
F
⁡
B
∈
F
A
14
13
expd
⊢
Fun
⁡
F
→
B
∈
A
→
B
∈
dom
⁡
F
→
B
∈
A
→
F
⁡
B
∈
F
A
15
14
com12
⊢
B
∈
A
→
Fun
⁡
F
→
B
∈
dom
⁡
F
→
B
∈
A
→
F
⁡
B
∈
F
A
16
15
impd
⊢
B
∈
A
→
Fun
⁡
F
∧
B
∈
dom
⁡
F
→
B
∈
A
→
F
⁡
B
∈
F
A
17
16
pm2.43b
⊢
Fun
⁡
F
∧
B
∈
dom
⁡
F
→
B
∈
A
→
F
⁡
B
∈
F
A