Metamath Proof Explorer


Theorem funfvima2d

Description: A function's value in a preimage belongs to the image. (Contributed by Stanislas Polu, 9-Mar-2020) (Revised by AV, 23-Mar-2024)

Ref Expression
Hypothesis funfvima2d.1 φ F : A B
Assertion funfvima2d φ X A F X F A

Proof

Step Hyp Ref Expression
1 funfvima2d.1 φ F : A B
2 1 ffund φ Fun F
3 ssidd φ A A
4 1 fdmd φ dom F = A
5 3 4 sseqtrrd φ A dom F
6 funfvima2 Fun F A dom F X A F X F A
7 2 5 6 syl2anc φ X A F X F A
8 7 imp φ X A F X F A