Metamath Proof Explorer


Theorem funfvima3

Description: A class including a function contains the function's value in the image of the singleton of the argument. (Contributed by NM, 23-Mar-2004)

Ref Expression
Assertion funfvima3 Fun F F G A dom F F A G A

Proof

Step Hyp Ref Expression
1 ssel F G A F A F A F A G
2 funfvop Fun F A dom F A F A F
3 1 2 impel F G Fun F A dom F A F A G
4 sneq x = A x = A
5 4 imaeq2d x = A G x = G A
6 5 eleq2d x = A F A G x F A G A
7 opeq1 x = A x F A = A F A
8 7 eleq1d x = A x F A G A F A G
9 vex x V
10 fvex F A V
11 9 10 elimasn F A G x x F A G
12 6 8 11 vtoclbg A dom F F A G A A F A G
13 12 ad2antll F G Fun F A dom F F A G A A F A G
14 3 13 mpbird F G Fun F A dom F F A G A
15 14 exp32 F G Fun F A dom F F A G A
16 15 impcom Fun F F G A dom F F A G A