Metamath Proof Explorer


Theorem funimacnv

Description: The image of the preimage of a function. (Contributed by NM, 25-May-2004)

Ref Expression
Assertion funimacnv Fun F F F -1 A = A ran F

Proof

Step Hyp Ref Expression
1 df-ima F F -1 A = ran F F -1 A
2 funcnvres2 Fun F F -1 A -1 = F F -1 A
3 2 rneqd Fun F ran F -1 A -1 = ran F F -1 A
4 1 3 eqtr4id Fun F F F -1 A = ran F -1 A -1
5 df-rn ran F = dom F -1
6 5 ineq2i A ran F = A dom F -1
7 dmres dom F -1 A = A dom F -1
8 dfdm4 dom F -1 A = ran F -1 A -1
9 6 7 8 3eqtr2ri ran F -1 A -1 = A ran F
10 4 9 eqtrdi Fun F F F -1 A = A ran F