Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
funimacnv
Next ⟩
funimass1
Metamath Proof Explorer
Ascii
Unicode
Theorem
funimacnv
Description:
The image of the preimage of a function.
(Contributed by
NM
, 25-May-2004)
Ref
Expression
Assertion
funimacnv
⊢
Fun
⁡
F
→
F
F
-1
A
=
A
∩
ran
⁡
F
Proof
Step
Hyp
Ref
Expression
1
df-ima
⊢
F
F
-1
A
=
ran
⁡
F
↾
F
-1
A
2
funcnvres2
⊢
Fun
⁡
F
→
F
-1
↾
A
-1
=
F
↾
F
-1
A
3
2
rneqd
⊢
Fun
⁡
F
→
ran
⁡
F
-1
↾
A
-1
=
ran
⁡
F
↾
F
-1
A
4
1
3
eqtr4id
⊢
Fun
⁡
F
→
F
F
-1
A
=
ran
⁡
F
-1
↾
A
-1
5
df-rn
⊢
ran
⁡
F
=
dom
⁡
F
-1
6
5
ineq2i
⊢
A
∩
ran
⁡
F
=
A
∩
dom
⁡
F
-1
7
dmres
⊢
dom
⁡
F
-1
↾
A
=
A
∩
dom
⁡
F
-1
8
dfdm4
⊢
dom
⁡
F
-1
↾
A
=
ran
⁡
F
-1
↾
A
-1
9
6
7
8
3eqtr2ri
⊢
ran
⁡
F
-1
↾
A
-1
=
A
∩
ran
⁡
F
10
4
9
eqtrdi
⊢
Fun
⁡
F
→
F
F
-1
A
=
A
∩
ran
⁡
F