Metamath Proof Explorer


Theorem funimaeq

Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses funimaeq.x x φ
funimaeq.f φ Fun F
funimaeq.g φ Fun G
funimaeq.a φ A dom F
funimaeq.d φ A dom G
funimaeq.e φ x A F x = G x
Assertion funimaeq φ F A = G A

Proof

Step Hyp Ref Expression
1 funimaeq.x x φ
2 funimaeq.f φ Fun F
3 funimaeq.g φ Fun G
4 funimaeq.a φ A dom F
5 funimaeq.d φ A dom G
6 funimaeq.e φ x A F x = G x
7 3 funfnd φ G Fn dom G
8 7 adantr φ x A G Fn dom G
9 5 adantr φ x A A dom G
10 simpr φ x A x A
11 fnfvima G Fn dom G A dom G x A G x G A
12 8 9 10 11 syl3anc φ x A G x G A
13 6 12 eqeltrd φ x A F x G A
14 1 2 13 funimassd φ F A G A
15 2 funfnd φ F Fn dom F
16 15 adantr φ x A F Fn dom F
17 4 adantr φ x A A dom F
18 fnfvima F Fn dom F A dom F x A F x F A
19 16 17 10 18 syl3anc φ x A F x F A
20 6 19 eqeltrrd φ x A G x F A
21 1 3 20 funimassd φ G A F A
22 14 21 eqssd φ F A = G A