Metamath Proof Explorer


Theorem funimass4f

Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Thierry Arnoux, 24-Apr-2017)

Ref Expression
Hypotheses funimass4f.1 _ x A
funimass4f.2 _ x B
funimass4f.3 _ x F
Assertion funimass4f Fun F A dom F F A B x A F x B

Proof

Step Hyp Ref Expression
1 funimass4f.1 _ x A
2 funimass4f.2 _ x B
3 funimass4f.3 _ x F
4 3 nffun x Fun F
5 3 nfdm _ x dom F
6 1 5 nfss x A dom F
7 4 6 nfan x Fun F A dom F
8 3 1 nfima _ x F A
9 8 2 nfss x F A B
10 7 9 nfan x Fun F A dom F F A B
11 funfvima2 Fun F A dom F x A F x F A
12 ssel F A B F x F A F x B
13 11 12 sylan9 Fun F A dom F F A B x A F x B
14 10 13 ralrimi Fun F A dom F F A B x A F x B
15 1 3 dfimafnf Fun F A dom F F A = y | x A y = F x
16 15 adantr Fun F A dom F x A F x B F A = y | x A y = F x
17 2 abrexss x A F x B y | x A y = F x B
18 17 adantl Fun F A dom F x A F x B y | x A y = F x B
19 16 18 eqsstrd Fun F A dom F x A F x B F A B
20 14 19 impbida Fun F A dom F F A B x A F x B