Metamath Proof Explorer


Theorem funimass4f

Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Thierry Arnoux, 24-Apr-2017)

Ref Expression
Hypotheses funimass4f.1 _xA
funimass4f.2 _xB
funimass4f.3 _xF
Assertion funimass4f FunFAdomFFABxAFxB

Proof

Step Hyp Ref Expression
1 funimass4f.1 _xA
2 funimass4f.2 _xB
3 funimass4f.3 _xF
4 3 nffun xFunF
5 3 nfdm _xdomF
6 1 5 nfss xAdomF
7 4 6 nfan xFunFAdomF
8 3 1 nfima _xFA
9 8 2 nfss xFAB
10 7 9 nfan xFunFAdomFFAB
11 funfvima2 FunFAdomFxAFxFA
12 ssel FABFxFAFxB
13 11 12 sylan9 FunFAdomFFABxAFxB
14 10 13 ralrimi FunFAdomFFABxAFxB
15 1 3 dfimafnf FunFAdomFFA=y|xAy=Fx
16 15 adantr FunFAdomFxAFxBFA=y|xAy=Fx
17 2 abrexss xAFxBy|xAy=FxB
18 17 adantl FunFAdomFxAFxBy|xAy=FxB
19 16 18 eqsstrd FunFAdomFxAFxBFAB
20 14 19 impbida FunFAdomFFABxAFxB