Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
funimass5
Next ⟩
funconstss
Metamath Proof Explorer
Ascii
Unicode
Theorem
funimass5
Description:
A subclass of a preimage in terms of function values.
(Contributed by
NM
, 15-May-2007)
Ref
Expression
Assertion
funimass5
⊢
Fun
⁡
F
∧
A
⊆
dom
⁡
F
→
A
⊆
F
-1
B
↔
∀
x
∈
A
F
⁡
x
∈
B
Proof
Step
Hyp
Ref
Expression
1
funimass3
⊢
Fun
⁡
F
∧
A
⊆
dom
⁡
F
→
F
A
⊆
B
↔
A
⊆
F
-1
B
2
funimass4
⊢
Fun
⁡
F
∧
A
⊆
dom
⁡
F
→
F
A
⊆
B
↔
∀
x
∈
A
F
⁡
x
∈
B
3
1
2
bitr3d
⊢
Fun
⁡
F
∧
A
⊆
dom
⁡
F
→
A
⊆
F
-1
B
↔
∀
x
∈
A
F
⁡
x
∈
B