Metamath Proof Explorer


Theorem funisfsupp

Description: The property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019)

Ref Expression
Assertion funisfsupp Fun R R V Z W finSupp Z R R supp Z Fin

Proof

Step Hyp Ref Expression
1 isfsupp R V Z W finSupp Z R Fun R R supp Z Fin
2 1 3adant1 Fun R R V Z W finSupp Z R Fun R R supp Z Fin
3 ibar Fun R R supp Z Fin Fun R R supp Z Fin
4 3 bicomd Fun R Fun R R supp Z Fin R supp Z Fin
5 4 3ad2ant1 Fun R R V Z W Fun R R supp Z Fin R supp Z Fin
6 2 5 bitrd Fun R R V Z W finSupp Z R R supp Z Fin