Metamath Proof Explorer


Theorem funiun

Description: A function is a union of singletons of ordered pairs indexed by its domain. (Contributed by AV, 18-Sep-2020)

Ref Expression
Assertion funiun Fun F F = x dom F x F x

Proof

Step Hyp Ref Expression
1 funfn Fun F F Fn dom F
2 dffn5 F Fn dom F F = x dom F F x
3 1 2 sylbb Fun F F = x dom F F x
4 fvex F x V
5 4 dfmpt x dom F F x = x dom F x F x
6 3 5 eqtrdi Fun F F = x dom F x F x