Description: The indexed union of a function's values is the union of its image under the index class.
Note: This theorem depends on the fact that our function value is the empty set outside of its domain. If the antecedent is changed to F Fn A , the theorem can be proved without this dependency. (Contributed by NM, 26-Mar-2006) (Proof shortened by Mario Carneiro, 31-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | funiunfv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres | |
|
2 | 1 | funfnd | |
3 | fniunfv | |
|
4 | 2 3 | syl | |
5 | undif2 | |
|
6 | dmres | |
|
7 | inss1 | |
|
8 | 6 7 | eqsstri | |
9 | ssequn1 | |
|
10 | 8 9 | mpbi | |
11 | 5 10 | eqtri | |
12 | iuneq1 | |
|
13 | 11 12 | ax-mp | |
14 | iunxun | |
|
15 | eldifn | |
|
16 | ndmfv | |
|
17 | 15 16 | syl | |
18 | 17 | iuneq2i | |
19 | iun0 | |
|
20 | 18 19 | eqtri | |
21 | 20 | uneq2i | |
22 | un0 | |
|
23 | 21 22 | eqtri | |
24 | 14 23 | eqtri | |
25 | fvres | |
|
26 | 25 | iuneq2i | |
27 | 13 24 26 | 3eqtr3ri | |
28 | df-ima | |
|
29 | 28 | unieqi | |
30 | 4 27 29 | 3eqtr4g | |