Metamath Proof Explorer


Theorem funiunfv

Description: The indexed union of a function's values is the union of its image under the index class.

Note: This theorem depends on the fact that our function value is the empty set outside of its domain. If the antecedent is changed to F Fn A , the theorem can be proved without this dependency. (Contributed by NM, 26-Mar-2006) (Proof shortened by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion funiunfv FunFxAFx=FA

Proof

Step Hyp Ref Expression
1 funres FunFFunFA
2 1 funfnd FunFFAFndomFA
3 fniunfv FAFndomFAxdomFAFAx=ranFA
4 2 3 syl FunFxdomFAFAx=ranFA
5 undif2 domFAAdomFA=domFAA
6 dmres domFA=AdomF
7 inss1 AdomFA
8 6 7 eqsstri domFAA
9 ssequn1 domFAAdomFAA=A
10 8 9 mpbi domFAA=A
11 5 10 eqtri domFAAdomFA=A
12 iuneq1 domFAAdomFA=AxdomFAAdomFAFAx=xAFAx
13 11 12 ax-mp xdomFAAdomFAFAx=xAFAx
14 iunxun xdomFAAdomFAFAx=xdomFAFAxxAdomFAFAx
15 eldifn xAdomFA¬xdomFA
16 ndmfv ¬xdomFAFAx=
17 15 16 syl xAdomFAFAx=
18 17 iuneq2i xAdomFAFAx=xAdomFA
19 iun0 xAdomFA=
20 18 19 eqtri xAdomFAFAx=
21 20 uneq2i xdomFAFAxxAdomFAFAx=xdomFAFAx
22 un0 xdomFAFAx=xdomFAFAx
23 21 22 eqtri xdomFAFAxxAdomFAFAx=xdomFAFAx
24 14 23 eqtri xdomFAAdomFAFAx=xdomFAFAx
25 fvres xAFAx=Fx
26 25 iuneq2i xAFAx=xAFx
27 13 24 26 3eqtr3ri xAFx=xdomFAFAx
28 df-ima FA=ranFA
29 28 unieqi FA=ranFA
30 4 27 29 3eqtr4g FunFxAFx=FA