Metamath Proof Explorer


Theorem funop

Description: An ordered pair is a function iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng , as relsnopg is to relop . (New usage is discouraged.)

Ref Expression
Hypotheses funopsn.x X V
funopsn.y Y V
Assertion funop Fun X Y a X = a X Y = a a

Proof

Step Hyp Ref Expression
1 funopsn.x X V
2 funopsn.y Y V
3 eqid X Y = X Y
4 1 2 funopsn Fun X Y X Y = X Y a X = a X Y = a a
5 3 4 mpan2 Fun X Y a X = a X Y = a a
6 vex a V
7 6 6 funsn Fun a a
8 funeq X Y = a a Fun X Y Fun a a
9 7 8 mpbiri X Y = a a Fun X Y
10 9 adantl X = a X Y = a a Fun X Y
11 10 exlimiv a X = a X Y = a a Fun X Y
12 5 11 impbii Fun X Y a X = a X Y = a a