Metamath Proof Explorer


Theorem funoprab

Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 17-Mar-1995)

Ref Expression
Hypothesis funoprab.1 * z φ
Assertion funoprab Fun x y z | φ

Proof

Step Hyp Ref Expression
1 funoprab.1 * z φ
2 1 gen2 x y * z φ
3 funoprabg x y * z φ Fun x y z | φ
4 2 3 ax-mp Fun x y z | φ