Metamath Proof Explorer


Theorem funprg

Description: A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011) (Proof shortened by JJ, 14-Jul-2021)

Ref Expression
Assertion funprg A V B W C X D Y A B Fun A C B D

Proof

Step Hyp Ref Expression
1 funsng A V C X Fun A C
2 funsng B W D Y Fun B D
3 1 2 anim12i A V C X B W D Y Fun A C Fun B D
4 3 an4s A V B W C X D Y Fun A C Fun B D
5 4 3adant3 A V B W C X D Y A B Fun A C Fun B D
6 dmsnopg C X dom A C = A
7 dmsnopg D Y dom B D = B
8 6 7 ineqan12d C X D Y dom A C dom B D = A B
9 disjsn2 A B A B =
10 8 9 sylan9eq C X D Y A B dom A C dom B D =
11 10 3adant1 A V B W C X D Y A B dom A C dom B D =
12 funun Fun A C Fun B D dom A C dom B D = Fun A C B D
13 5 11 12 syl2anc A V B W C X D Y A B Fun A C B D
14 df-pr A C B D = A C B D
15 14 funeqi Fun A C B D Fun A C B D
16 13 15 sylibr A V B W C X D Y A B Fun A C B D