Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
funrel
Next ⟩
0nelfun
Metamath Proof Explorer
Ascii
Unicode
Theorem
funrel
Description:
A function is a relation.
(Contributed by
NM
, 1-Aug-1994)
Ref
Expression
Assertion
funrel
⊢
Fun
⁡
A
→
Rel
⁡
A
Proof
Step
Hyp
Ref
Expression
1
df-fun
⊢
Fun
⁡
A
↔
Rel
⁡
A
∧
A
∘
A
-1
⊆
I
2
1
simplbi
⊢
Fun
⁡
A
→
Rel
⁡
A