Metamath Proof Explorer


Theorem funresdfunsn

Description: Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself. (Contributed by AV, 2-Dec-2018)

Ref Expression
Assertion funresdfunsn Fun F X dom F F V X X F X = F

Proof

Step Hyp Ref Expression
1 funrel Fun F Rel F
2 resdmdfsn Rel F F V X = F dom F X
3 1 2 syl Fun F F V X = F dom F X
4 3 adantr Fun F X dom F F V X = F dom F X
5 4 uneq1d Fun F X dom F F V X X F X = F dom F X X F X
6 funfn Fun F F Fn dom F
7 fnsnsplit F Fn dom F X dom F F = F dom F X X F X
8 6 7 sylanb Fun F X dom F F = F dom F X X F X
9 5 8 eqtr4d Fun F X dom F F V X X F X = F