Metamath Proof Explorer


Theorem funressn

Description: A function restricted to a singleton. (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion funressn Fun F F B B F B

Proof

Step Hyp Ref Expression
1 funfn Fun F F Fn dom F
2 fnressn F Fn dom F B dom F F B = B F B
3 1 2 sylanb Fun F B dom F F B = B F B
4 eqimss F B = B F B F B B F B
5 3 4 syl Fun F B dom F F B B F B
6 disjsn dom F B = ¬ B dom F
7 fnresdisj F Fn dom F dom F B = F B =
8 1 7 sylbi Fun F dom F B = F B =
9 6 8 bitr3id Fun F ¬ B dom F F B =
10 9 biimpa Fun F ¬ B dom F F B =
11 0ss B F B
12 10 11 eqsstrdi Fun F ¬ B dom F F B B F B
13 5 12 pm2.61dan Fun F F B B F B