Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
funressn
Next ⟩
fressnfv
Metamath Proof Explorer
Ascii
Unicode
Theorem
funressn
Description:
A function restricted to a singleton.
(Contributed by
Mario Carneiro
, 16-Nov-2014)
Ref
Expression
Assertion
funressn
⊢
Fun
⁡
F
→
F
↾
B
⊆
B
F
⁡
B
Proof
Step
Hyp
Ref
Expression
1
funfn
⊢
Fun
⁡
F
↔
F
Fn
dom
⁡
F
2
fnressn
⊢
F
Fn
dom
⁡
F
∧
B
∈
dom
⁡
F
→
F
↾
B
=
B
F
⁡
B
3
1
2
sylanb
⊢
Fun
⁡
F
∧
B
∈
dom
⁡
F
→
F
↾
B
=
B
F
⁡
B
4
eqimss
⊢
F
↾
B
=
B
F
⁡
B
→
F
↾
B
⊆
B
F
⁡
B
5
3
4
syl
⊢
Fun
⁡
F
∧
B
∈
dom
⁡
F
→
F
↾
B
⊆
B
F
⁡
B
6
disjsn
⊢
dom
⁡
F
∩
B
=
∅
↔
¬
B
∈
dom
⁡
F
7
fnresdisj
⊢
F
Fn
dom
⁡
F
→
dom
⁡
F
∩
B
=
∅
↔
F
↾
B
=
∅
8
1
7
sylbi
⊢
Fun
⁡
F
→
dom
⁡
F
∩
B
=
∅
↔
F
↾
B
=
∅
9
6
8
bitr3id
⊢
Fun
⁡
F
→
¬
B
∈
dom
⁡
F
↔
F
↾
B
=
∅
10
9
biimpa
⊢
Fun
⁡
F
∧
¬
B
∈
dom
⁡
F
→
F
↾
B
=
∅
11
0ss
⊢
∅
⊆
B
F
⁡
B
12
10
11
eqsstrdi
⊢
Fun
⁡
F
∧
¬
B
∈
dom
⁡
F
→
F
↾
B
⊆
B
F
⁡
B
13
5
12
pm2.61dan
⊢
Fun
⁡
F
→
F
↾
B
⊆
B
F
⁡
B