Metamath Proof Explorer


Theorem funressn

Description: A function restricted to a singleton. (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion funressn FunFFBBFB

Proof

Step Hyp Ref Expression
1 funfn FunFFFndomF
2 fnressn FFndomFBdomFFB=BFB
3 1 2 sylanb FunFBdomFFB=BFB
4 eqimss FB=BFBFBBFB
5 3 4 syl FunFBdomFFBBFB
6 disjsn domFB=¬BdomF
7 fnresdisj FFndomFdomFB=FB=
8 1 7 sylbi FunFdomFB=FB=
9 6 8 bitr3id FunF¬BdomFFB=
10 9 biimpa FunF¬BdomFFB=
11 0ss BFB
12 10 11 eqsstrdi FunF¬BdomFFBBFB
13 5 12 pm2.61dan FunFFBBFB