Metamath Proof Explorer


Theorem funsneqopb

Description: A singleton of an ordered pair is an ordered pair iff the components are equal. (Contributed by AV, 24-Sep-2020) (Avoid depending on this detail.)

Ref Expression
Hypotheses funsndifnop.a A V
funsndifnop.b B V
funsndifnop.g G = A B
Assertion funsneqopb A = B G V × V

Proof

Step Hyp Ref Expression
1 funsndifnop.a A V
2 funsndifnop.b B V
3 funsndifnop.g G = A B
4 opeq1 A = B A B = B B
5 4 sneqd A = B A B = B B
6 2 snopeqopsnid B B = B B
7 5 6 eqtrdi A = B A B = B B
8 3 7 eqtrid A = B G = B B
9 snex B V
10 9 9 opelvv B B V × V
11 8 10 eqeltrdi A = B G V × V
12 1 2 3 funsndifnop A B ¬ G V × V
13 12 necon4ai G V × V A = B
14 11 13 impbii A = B G V × V