Metamath Proof Explorer


Theorem funssxp

Description: Two ways of specifying a partial function from A to B . (Contributed by NM, 13-Nov-2007)

Ref Expression
Assertion funssxp Fun F F A × B F : dom F B dom F A

Proof

Step Hyp Ref Expression
1 funfn Fun F F Fn dom F
2 1 biimpi Fun F F Fn dom F
3 rnss F A × B ran F ran A × B
4 rnxpss ran A × B B
5 3 4 sstrdi F A × B ran F B
6 2 5 anim12i Fun F F A × B F Fn dom F ran F B
7 df-f F : dom F B F Fn dom F ran F B
8 6 7 sylibr Fun F F A × B F : dom F B
9 dmss F A × B dom F dom A × B
10 dmxpss dom A × B A
11 9 10 sstrdi F A × B dom F A
12 11 adantl Fun F F A × B dom F A
13 8 12 jca Fun F F A × B F : dom F B dom F A
14 ffun F : dom F B Fun F
15 14 adantr F : dom F B dom F A Fun F
16 fssxp F : dom F B F dom F × B
17 xpss1 dom F A dom F × B A × B
18 16 17 sylan9ss F : dom F B dom F A F A × B
19 15 18 jca F : dom F B dom F A Fun F F A × B
20 13 19 impbii Fun F F A × B F : dom F B dom F A