Metamath Proof Explorer


Theorem funtp

Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses funtp.1 A V
funtp.2 B V
funtp.3 C V
funtp.4 D V
funtp.5 E V
funtp.6 F V
Assertion funtp A B A C B C Fun A D B E C F

Proof

Step Hyp Ref Expression
1 funtp.1 A V
2 funtp.2 B V
3 funtp.3 C V
4 funtp.4 D V
5 funtp.5 E V
6 funtp.6 F V
7 1 2 4 5 funpr A B Fun A D B E
8 3 6 funsn Fun C F
9 7 8 jctir A B Fun A D B E Fun C F
10 4 5 dmprop dom A D B E = A B
11 df-pr A B = A B
12 10 11 eqtri dom A D B E = A B
13 6 dmsnop dom C F = C
14 12 13 ineq12i dom A D B E dom C F = A B C
15 disjsn2 A C A C =
16 disjsn2 B C B C =
17 15 16 anim12i A C B C A C = B C =
18 undisj1 A C = B C = A B C =
19 17 18 sylib A C B C A B C =
20 14 19 eqtrid A C B C dom A D B E dom C F =
21 funun Fun A D B E Fun C F dom A D B E dom C F = Fun A D B E C F
22 9 20 21 syl2an A B A C B C Fun A D B E C F
23 22 3impb A B A C B C Fun A D B E C F
24 df-tp A D B E C F = A D B E C F
25 24 funeqi Fun A D B E C F Fun A D B E C F
26 23 25 sylibr A B A C B C Fun A D B E C F