Metamath Proof Explorer


Theorem fununfun

Description: If the union of classes is a function, the classes itselves are functions. (Contributed by AV, 18-Jul-2019)

Ref Expression
Assertion fununfun Fun F G Fun F Fun G

Proof

Step Hyp Ref Expression
1 funrel Fun F G Rel F G
2 relun Rel F G Rel F Rel G
3 1 2 sylib Fun F G Rel F Rel G
4 simpl Rel F Rel G Rel F
5 fununmo Fun F G * y x F y
6 5 alrimiv Fun F G x * y x F y
7 4 6 anim12i Rel F Rel G Fun F G Rel F x * y x F y
8 dffun6 Fun F Rel F x * y x F y
9 7 8 sylibr Rel F Rel G Fun F G Fun F
10 simpr Rel F Rel G Rel G
11 uncom F G = G F
12 11 funeqi Fun F G Fun G F
13 fununmo Fun G F * y x G y
14 12 13 sylbi Fun F G * y x G y
15 14 alrimiv Fun F G x * y x G y
16 10 15 anim12i Rel F Rel G Fun F G Rel G x * y x G y
17 dffun6 Fun G Rel G x * y x G y
18 16 17 sylibr Rel F Rel G Fun F G Fun G
19 9 18 jca Rel F Rel G Fun F G Fun F Fun G
20 3 19 mpancom Fun F G Fun F Fun G