Metamath Proof Explorer


Theorem fununmo

Description: If the union of classes is a function, there is at most one element in relation to an arbitrary element regarding one of these classes. (Contributed by AV, 18-Jul-2019)

Ref Expression
Assertion fununmo Fun F G * y x F y

Proof

Step Hyp Ref Expression
1 funmo Fun F G * y x F G y
2 orc x F y x F y x G y
3 brun x F G y x F y x G y
4 2 3 sylibr x F y x F G y
5 4 moimi * y x F G y * y x F y
6 1 5 syl Fun F G * y x F y