Metamath Proof Explorer


Theorem fusgreghash2wspv

Description: According to statement 7 in Huneke p. 2: "For each vertex v, there are exactly ( k 2 ) paths with length two having v in the middle, ..." in a finite k-regular graph. For directed simple paths of length 2 represented by length 3 strings, we have again k*(k-1) such paths, see also comment of frgrhash2wsp . (Contributed by Alexander van der Vekens, 10-Mar-2018) (Revised by AV, 17-May-2021) (Proof shortened by AV, 12-Feb-2022)

Ref Expression
Hypotheses frgrhash2wsp.v V = Vtx G
fusgreg2wsp.m M = a V w 2 WSPathsN G | w 1 = a
Assertion fusgreghash2wspv G FinUSGraph v V VtxDeg G v = K M v = K K 1

Proof

Step Hyp Ref Expression
1 frgrhash2wsp.v V = Vtx G
2 fusgreg2wsp.m M = a V w 2 WSPathsN G | w 1 = a
3 1 2 fusgr2wsp2nb G FinUSGraph v V M v = c G NeighbVtx v d G NeighbVtx v c ⟨“ cvd ”⟩
4 3 fveq2d G FinUSGraph v V M v = c G NeighbVtx v d G NeighbVtx v c ⟨“ cvd ”⟩
5 4 adantr G FinUSGraph v V VtxDeg G v = K M v = c G NeighbVtx v d G NeighbVtx v c ⟨“ cvd ”⟩
6 1 eleq2i v V v Vtx G
7 nbfiusgrfi G FinUSGraph v Vtx G G NeighbVtx v Fin
8 6 7 sylan2b G FinUSGraph v V G NeighbVtx v Fin
9 8 adantr G FinUSGraph v V VtxDeg G v = K G NeighbVtx v Fin
10 eqid G NeighbVtx v c = G NeighbVtx v c
11 snfi ⟨“ cvd ”⟩ Fin
12 11 a1i G FinUSGraph v V VtxDeg G v = K c G NeighbVtx v d G NeighbVtx v c ⟨“ cvd ”⟩ Fin
13 1 nbgrssvtx G NeighbVtx v V
14 13 a1i G FinUSGraph v V c G NeighbVtx v G NeighbVtx v V
15 14 ssdifd G FinUSGraph v V c G NeighbVtx v G NeighbVtx v c V c
16 iunss1 G NeighbVtx v c V c d G NeighbVtx v c ⟨“ cvd ”⟩ d V c ⟨“ cvd ”⟩
17 15 16 syl G FinUSGraph v V c G NeighbVtx v d G NeighbVtx v c ⟨“ cvd ”⟩ d V c ⟨“ cvd ”⟩
18 17 ralrimiva G FinUSGraph v V c G NeighbVtx v d G NeighbVtx v c ⟨“ cvd ”⟩ d V c ⟨“ cvd ”⟩
19 simpr G FinUSGraph v V v V
20 s3iunsndisj v V Disj c G NeighbVtx v d V c ⟨“ cvd ”⟩
21 19 20 syl G FinUSGraph v V Disj c G NeighbVtx v d V c ⟨“ cvd ”⟩
22 disjss2 c G NeighbVtx v d G NeighbVtx v c ⟨“ cvd ”⟩ d V c ⟨“ cvd ”⟩ Disj c G NeighbVtx v d V c ⟨“ cvd ”⟩ Disj c G NeighbVtx v d G NeighbVtx v c ⟨“ cvd ”⟩
23 18 21 22 sylc G FinUSGraph v V Disj c G NeighbVtx v d G NeighbVtx v c ⟨“ cvd ”⟩
24 23 adantr G FinUSGraph v V VtxDeg G v = K Disj c G NeighbVtx v d G NeighbVtx v c ⟨“ cvd ”⟩
25 19 adantr G FinUSGraph v V VtxDeg G v = K v V
26 25 anim1ci G FinUSGraph v V VtxDeg G v = K c G NeighbVtx v c G NeighbVtx v v V
27 s3sndisj c G NeighbVtx v v V Disj d G NeighbVtx v c ⟨“ cvd ”⟩
28 26 27 syl G FinUSGraph v V VtxDeg G v = K c G NeighbVtx v Disj d G NeighbVtx v c ⟨“ cvd ”⟩
29 s3cli ⟨“ cvd ”⟩ Word V
30 hashsng ⟨“ cvd ”⟩ Word V ⟨“ cvd ”⟩ = 1
31 29 30 mp1i G FinUSGraph v V VtxDeg G v = K c G NeighbVtx v d G NeighbVtx v c ⟨“ cvd ”⟩ = 1
32 9 10 12 24 28 31 hash2iun1dif1 G FinUSGraph v V VtxDeg G v = K c G NeighbVtx v d G NeighbVtx v c ⟨“ cvd ”⟩ = G NeighbVtx v G NeighbVtx v 1
33 fusgrusgr G FinUSGraph G USGraph
34 1 hashnbusgrvd G USGraph v V G NeighbVtx v = VtxDeg G v
35 33 34 sylan G FinUSGraph v V G NeighbVtx v = VtxDeg G v
36 id G NeighbVtx v = VtxDeg G v G NeighbVtx v = VtxDeg G v
37 oveq1 G NeighbVtx v = VtxDeg G v G NeighbVtx v 1 = VtxDeg G v 1
38 36 37 oveq12d G NeighbVtx v = VtxDeg G v G NeighbVtx v G NeighbVtx v 1 = VtxDeg G v VtxDeg G v 1
39 35 38 syl G FinUSGraph v V G NeighbVtx v G NeighbVtx v 1 = VtxDeg G v VtxDeg G v 1
40 id VtxDeg G v = K VtxDeg G v = K
41 oveq1 VtxDeg G v = K VtxDeg G v 1 = K 1
42 40 41 oveq12d VtxDeg G v = K VtxDeg G v VtxDeg G v 1 = K K 1
43 39 42 sylan9eq G FinUSGraph v V VtxDeg G v = K G NeighbVtx v G NeighbVtx v 1 = K K 1
44 5 32 43 3eqtrd G FinUSGraph v V VtxDeg G v = K M v = K K 1
45 44 ex G FinUSGraph v V VtxDeg G v = K M v = K K 1
46 45 ralrimiva G FinUSGraph v V VtxDeg G v = K M v = K K 1