Metamath Proof Explorer


Theorem fusgrfis

Description: A finite simple graph is of finite size, i.e. has a finite number of edges. (Contributed by Alexander van der Vekens, 6-Jan-2018) (Revised by AV, 8-Nov-2020)

Ref Expression
Assertion fusgrfis G FinUSGraph Edg G Fin

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 1 isfusgr G FinUSGraph G USGraph Vtx G Fin
3 usgrop G USGraph Vtx G iEdg G USGraph
4 fvex iEdg G V
5 mptresid I p Edg v e | n p = q p Edg v e | n p q
6 fvex Edg v e V
7 6 mptrabex q p Edg v e | n p q V
8 5 7 eqeltri I p Edg v e | n p V
9 eleq1 e = iEdg G e Fin iEdg G Fin
10 9 adantl v = Vtx G e = iEdg G e Fin iEdg G Fin
11 eleq1 e = f e Fin f Fin
12 11 adantl v = w e = f e Fin f Fin
13 vex v V
14 vex e V
15 13 14 opvtxfvi Vtx v e = v
16 15 eqcomi v = Vtx v e
17 eqid Edg v e = Edg v e
18 eqid p Edg v e | n p = p Edg v e | n p
19 eqid v n I p Edg v e | n p = v n I p Edg v e | n p
20 16 17 18 19 usgrres1 v e USGraph n v v n I p Edg v e | n p USGraph
21 eleq1 f = I p Edg v e | n p f Fin I p Edg v e | n p Fin
22 21 adantl w = v n f = I p Edg v e | n p f Fin I p Edg v e | n p Fin
23 13 14 pm3.2i v V e V
24 fusgrfisbase v V e V v e USGraph v = 0 e Fin
25 23 24 mp3an1 v e USGraph v = 0 e Fin
26 simpl v V e V y + 1 0 v e USGraph v = y + 1 n v v V e V
27 simprr1 v V e V y + 1 0 v e USGraph v = y + 1 n v v e USGraph
28 eleq1 v = y + 1 v 0 y + 1 0
29 hashclb v V v Fin v 0
30 29 biimprd v V v 0 v Fin
31 30 adantr v V e V v 0 v Fin
32 31 com12 v 0 v V e V v Fin
33 28 32 syl6bir v = y + 1 y + 1 0 v V e V v Fin
34 33 3ad2ant2 v e USGraph v = y + 1 n v y + 1 0 v V e V v Fin
35 34 impcom y + 1 0 v e USGraph v = y + 1 n v v V e V v Fin
36 35 impcom v V e V y + 1 0 v e USGraph v = y + 1 n v v Fin
37 opfusgr v V e V v e FinUSGraph v e USGraph v Fin
38 37 adantr v V e V y + 1 0 v e USGraph v = y + 1 n v v e FinUSGraph v e USGraph v Fin
39 27 36 38 mpbir2and v V e V y + 1 0 v e USGraph v = y + 1 n v v e FinUSGraph
40 simprr3 v V e V y + 1 0 v e USGraph v = y + 1 n v n v
41 26 39 40 3jca v V e V y + 1 0 v e USGraph v = y + 1 n v v V e V v e FinUSGraph n v
42 23 41 mpan y + 1 0 v e USGraph v = y + 1 n v v V e V v e FinUSGraph n v
43 fusgrfisstep v V e V v e FinUSGraph n v I p Edg v e | n p Fin e Fin
44 42 43 syl y + 1 0 v e USGraph v = y + 1 n v I p Edg v e | n p Fin e Fin
45 44 imp y + 1 0 v e USGraph v = y + 1 n v I p Edg v e | n p Fin e Fin
46 4 8 10 12 20 22 25 45 opfi1ind Vtx G iEdg G USGraph Vtx G Fin iEdg G Fin
47 3 46 sylan G USGraph Vtx G Fin iEdg G Fin
48 eqid iEdg G = iEdg G
49 eqid Edg G = Edg G
50 48 49 usgredgffibi G USGraph Edg G Fin iEdg G Fin
51 50 adantr G USGraph Vtx G Fin Edg G Fin iEdg G Fin
52 47 51 mpbird G USGraph Vtx G Fin Edg G Fin
53 2 52 sylbi G FinUSGraph Edg G Fin