Metamath Proof Explorer


Theorem fusgrmaxsize

Description: The maximum size of a finite simple graph with n vertices is ( ( ( n - 1 ) * n ) / 2 ) . See statement in section I.1 of Bollobas p. 3 . (Contributed by Alexander van der Vekens, 13-Jan-2018) (Revised by AV, 14-Nov-2020)

Ref Expression
Hypotheses fusgrmaxsize.v V = Vtx G
fusgrmaxsize.e E = Edg G
Assertion fusgrmaxsize G FinUSGraph E ( V 2 )

Proof

Step Hyp Ref Expression
1 fusgrmaxsize.v V = Vtx G
2 fusgrmaxsize.e E = Edg G
3 1 isfusgr G FinUSGraph G USGraph V Fin
4 cusgrexg V Fin e V e ComplUSGraph
5 4 adantl G USGraph V Fin e V e ComplUSGraph
6 1 fvexi V V
7 vex e V
8 6 7 opvtxfvi Vtx V e = V
9 8 eqcomi V = Vtx V e
10 eqid Edg V e = Edg V e
11 1 2 9 10 sizusglecusg G USGraph V e ComplUSGraph E Edg V e
12 11 adantlr G USGraph V Fin V e ComplUSGraph E Edg V e
13 9 10 cusgrsize V e ComplUSGraph V Fin Edg V e = ( V 2 )
14 breq2 Edg V e = ( V 2 ) E Edg V e E ( V 2 )
15 14 biimpd Edg V e = ( V 2 ) E Edg V e E ( V 2 )
16 13 15 syl V e ComplUSGraph V Fin E Edg V e E ( V 2 )
17 16 expcom V Fin V e ComplUSGraph E Edg V e E ( V 2 )
18 17 adantl G USGraph V Fin V e ComplUSGraph E Edg V e E ( V 2 )
19 18 imp G USGraph V Fin V e ComplUSGraph E Edg V e E ( V 2 )
20 12 19 mpd G USGraph V Fin V e ComplUSGraph E ( V 2 )
21 5 20 exlimddv G USGraph V Fin E ( V 2 )
22 3 21 sylbi G FinUSGraph E ( V 2 )