Metamath Proof Explorer


Theorem fusgrn0degnn0

Description: In a nonempty, finite graph there is a vertex having a nonnegative integer as degree. (Contributed by Alexander van der Vekens, 6-Sep-2018) (Revised by AV, 1-Apr-2021)

Ref Expression
Hypothesis fusgrn0degnn0.v V = Vtx G
Assertion fusgrn0degnn0 G FinUSGraph V v V n 0 VtxDeg G v = n

Proof

Step Hyp Ref Expression
1 fusgrn0degnn0.v V = Vtx G
2 n0 V k k V
3 1 vtxdgfusgr G FinUSGraph u V VtxDeg G u 0
4 fveq2 u = k VtxDeg G u = VtxDeg G k
5 4 eleq1d u = k VtxDeg G u 0 VtxDeg G k 0
6 5 rspcv k V u V VtxDeg G u 0 VtxDeg G k 0
7 risset VtxDeg G k 0 n 0 n = VtxDeg G k
8 fveqeq2 v = k VtxDeg G v = n VtxDeg G k = n
9 eqcom VtxDeg G k = n n = VtxDeg G k
10 8 9 bitrdi v = k VtxDeg G v = n n = VtxDeg G k
11 10 rexbidv v = k n 0 VtxDeg G v = n n 0 n = VtxDeg G k
12 11 rspcev k V n 0 n = VtxDeg G k v V n 0 VtxDeg G v = n
13 12 expcom n 0 n = VtxDeg G k k V v V n 0 VtxDeg G v = n
14 7 13 sylbi VtxDeg G k 0 k V v V n 0 VtxDeg G v = n
15 14 com12 k V VtxDeg G k 0 v V n 0 VtxDeg G v = n
16 6 15 syld k V u V VtxDeg G u 0 v V n 0 VtxDeg G v = n
17 3 16 syl5 k V G FinUSGraph v V n 0 VtxDeg G v = n
18 17 exlimiv k k V G FinUSGraph v V n 0 VtxDeg G v = n
19 2 18 sylbi V G FinUSGraph v V n 0 VtxDeg G v = n
20 19 impcom G FinUSGraph V v V n 0 VtxDeg G v = n