Metamath Proof Explorer


Theorem fusgrn0eqdrusgr

Description: If all vertices in a nonempty finite simple graph have the same (finite) degree, the graph is k-regular. (Contributed by AV, 26-Dec-2020)

Ref Expression
Hypotheses isrusgr0.v V = Vtx G
isrusgr0.d D = VtxDeg G
Assertion fusgrn0eqdrusgr G FinUSGraph V v V D v = K G RegUSGraph K

Proof

Step Hyp Ref Expression
1 isrusgr0.v V = Vtx G
2 isrusgr0.d D = VtxDeg G
3 fusgrusgr G FinUSGraph G USGraph
4 3 ad2antrr G FinUSGraph V v V D v = K G USGraph
5 1 2 fusgrregdegfi G FinUSGraph V v V D v = K K 0
6 5 imp G FinUSGraph V v V D v = K K 0
7 6 nn0xnn0d G FinUSGraph V v V D v = K K 0 *
8 simpr G FinUSGraph V v V D v = K v V D v = K
9 1 2 usgreqdrusgr G USGraph K 0 * v V D v = K G RegUSGraph K
10 4 7 8 9 syl3anc G FinUSGraph V v V D v = K G RegUSGraph K
11 10 ex G FinUSGraph V v V D v = K G RegUSGraph K