Metamath Proof Explorer


Theorem fusgrregdegfi

Description: In a nonempty finite simple graph, the degree of each vertex is finite. (Contributed by Alexander van der Vekens, 6-Mar-2018) (Revised by AV, 19-Dec-2020)

Ref Expression
Hypotheses isrusgr0.v V = Vtx G
isrusgr0.d D = VtxDeg G
Assertion fusgrregdegfi G FinUSGraph V v V D v = K K 0

Proof

Step Hyp Ref Expression
1 isrusgr0.v V = Vtx G
2 isrusgr0.d D = VtxDeg G
3 1 vtxdgfusgr G FinUSGraph v V VtxDeg G v 0
4 r19.26 v V VtxDeg G v 0 D v = K v V VtxDeg G v 0 v V D v = K
5 2 fveq1i D v = VtxDeg G v
6 5 eqeq1i D v = K VtxDeg G v = K
7 eleq1 VtxDeg G v = K VtxDeg G v 0 K 0
8 6 7 sylbi D v = K VtxDeg G v 0 K 0
9 8 biimpac VtxDeg G v 0 D v = K K 0
10 9 ralimi v V VtxDeg G v 0 D v = K v V K 0
11 rspn0 V v V K 0 K 0
12 10 11 syl5com v V VtxDeg G v 0 D v = K V K 0
13 4 12 sylbir v V VtxDeg G v 0 v V D v = K V K 0
14 13 ex v V VtxDeg G v 0 v V D v = K V K 0
15 14 com23 v V VtxDeg G v 0 V v V D v = K K 0
16 3 15 syl G FinUSGraph V v V D v = K K 0
17 16 imp G FinUSGraph V v V D v = K K 0