Metamath Proof Explorer


Theorem fv2

Description: Alternate definition of function value. Definition 10.11 of Quine p. 68. (Contributed by NM, 30-Apr-2004) (Proof shortened by Andrew Salmon, 17-Sep-2011) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion fv2 F A = x | y A F y y = x

Proof

Step Hyp Ref Expression
1 df-fv F A = ι y | A F y
2 dfiota2 ι y | A F y = x | y A F y y = x
3 1 2 eqtri F A = x | y A F y y = x