| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfv |
|
| 2 |
|
biimpr |
|
| 3 |
2
|
alimi |
|
| 4 |
|
breq2 |
|
| 5 |
4
|
equsalvw |
|
| 6 |
3 5
|
sylib |
|
| 7 |
6
|
anim2i |
|
| 8 |
7
|
eximi |
|
| 9 |
|
elequ2 |
|
| 10 |
|
breq2 |
|
| 11 |
9 10
|
anbi12d |
|
| 12 |
11
|
cbvexvw |
|
| 13 |
8 12
|
sylib |
|
| 14 |
|
exsimpr |
|
| 15 |
|
eu6 |
|
| 16 |
14 15
|
sylibr |
|
| 17 |
13 16
|
jca |
|
| 18 |
|
nfeu1 |
|
| 19 |
|
nfv |
|
| 20 |
|
nfa1 |
|
| 21 |
19 20
|
nfan |
|
| 22 |
21
|
nfex |
|
| 23 |
18 22
|
nfim |
|
| 24 |
|
biimp |
|
| 25 |
|
ax9 |
|
| 26 |
24 25
|
syl6 |
|
| 27 |
26
|
impcomd |
|
| 28 |
27
|
sps |
|
| 29 |
28
|
anc2ri |
|
| 30 |
29
|
com12 |
|
| 31 |
30
|
eximdv |
|
| 32 |
15 31
|
biimtrid |
|
| 33 |
23 32
|
exlimi |
|
| 34 |
33
|
imp |
|
| 35 |
17 34
|
impbii |
|
| 36 |
1 35
|
bitri |
|
| 37 |
36
|
eqabi |
|