Metamath Proof Explorer


Theorem fvbr0

Description: Two possibilities for the behavior of a function value. (Contributed by Stefan O'Rear, 2-Nov-2014) (Proof shortened by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion fvbr0 XFFXFX=

Proof

Step Hyp Ref Expression
1 eqid FX=FX
2 tz6.12i FXFX=FXXFFX
3 1 2 mpi FXXFFX
4 3 necon1bi ¬XFFXFX=
5 4 orri XFFXFX=