Metamath Proof Explorer


Theorem fvclss

Description: Upper bound for the class of values of a class. (Contributed by NM, 9-Nov-1995)

Ref Expression
Assertion fvclss y | x y = F x ran F

Proof

Step Hyp Ref Expression
1 eqcom y = F x F x = y
2 tz6.12i y F x = y x F y
3 1 2 syl5bi y y = F x x F y
4 3 eximdv y x y = F x x x F y
5 vex y V
6 5 elrn y ran F x x F y
7 4 6 syl6ibr y x y = F x y ran F
8 7 com12 x y = F x y y ran F
9 8 necon1bd x y = F x ¬ y ran F y =
10 velsn y y =
11 9 10 syl6ibr x y = F x ¬ y ran F y
12 11 orrd x y = F x y ran F y
13 12 ss2abi y | x y = F x y | y ran F y
14 df-un ran F = y | y ran F y
15 13 14 sseqtrri y | x y = F x ran F