Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fvco
Metamath Proof Explorer
Description: Value of a function composition. Similar to Exercise 5 of TakeutiZaring
p. 28. (Contributed by NM , 22-Apr-2006) (Proof shortened by Mario
Carneiro , 26-Dec-2014)
Ref
Expression
Assertion
fvco
⊢ Fun ⁡ G ∧ A ∈ dom ⁡ G → F ∘ G ⁡ A = F ⁡ G ⁡ A
Proof
Step
Hyp
Ref
Expression
1
funfn
⊢ Fun ⁡ G ↔ G Fn dom ⁡ G
2
fvco2
⊢ G Fn dom ⁡ G ∧ A ∈ dom ⁡ G → F ∘ G ⁡ A = F ⁡ G ⁡ A
3
1 2
sylanb
⊢ Fun ⁡ G ∧ A ∈ dom ⁡ G → F ∘ G ⁡ A = F ⁡ G ⁡ A