Metamath Proof Explorer


Theorem fvco

Description: Value of a function composition. Similar to Exercise 5 of TakeutiZaring p. 28. (Contributed by NM, 22-Apr-2006) (Proof shortened by Mario Carneiro, 26-Dec-2014)

Ref Expression
Assertion fvco Fun G A dom G F G A = F G A

Proof

Step Hyp Ref Expression
1 funfn Fun G G Fn dom G
2 fvco2 G Fn dom G A dom G F G A = F G A
3 1 2 sylanb Fun G A dom G F G A = F G A