Metamath Proof Explorer


Theorem fvco3d

Description: Value of a function composition. Deduction form of fvco3 . (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses fvco3d.1 φ G : A B
fvco3d.2 φ C A
Assertion fvco3d φ F G C = F G C

Proof

Step Hyp Ref Expression
1 fvco3d.1 φ G : A B
2 fvco3d.2 φ C A
3 fvco3 G : A B C A F G C = F G C
4 1 2 3 syl2anc φ F G C = F G C