Metamath Proof Explorer


Theorem fvco4i

Description: Conditions for a composition to be expandable without conditions on the argument. (Contributed by Stefan O'Rear, 31-Mar-2015)

Ref Expression
Hypotheses fvco4i.a = F
fvco4i.b Fun G
Assertion fvco4i F G X = F G X

Proof

Step Hyp Ref Expression
1 fvco4i.a = F
2 fvco4i.b Fun G
3 funfn Fun G G Fn dom G
4 2 3 mpbi G Fn dom G
5 fvco2 G Fn dom G X dom G F G X = F G X
6 4 5 mpan X dom G F G X = F G X
7 dmcoss dom F G dom G
8 7 sseli X dom F G X dom G
9 ndmfv ¬ X dom F G F G X =
10 8 9 nsyl5 ¬ X dom G F G X =
11 ndmfv ¬ X dom G G X =
12 11 fveq2d ¬ X dom G F G X = F
13 1 10 12 3eqtr4a ¬ X dom G F G X = F G X
14 6 13 pm2.61i F G X = F G X