Metamath Proof Explorer


Theorem fvcod

Description: Value of a function composition. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses fvcod.g φ Fun G
fvcod.a φ A dom G
fvcod.h H = F G
Assertion fvcod φ H A = F G A

Proof

Step Hyp Ref Expression
1 fvcod.g φ Fun G
2 fvcod.a φ A dom G
3 fvcod.h H = F G
4 3 fveq1i H A = F G A
5 4 a1i φ H A = F G A
6 fvco Fun G A dom G F G A = F G A
7 1 2 6 syl2anc φ F G A = F G A
8 5 7 eqtrd φ H A = F G A