Metamath Proof Explorer


Theorem fvconst

Description: The value of a constant function. (Contributed by NM, 30-May-1999)

Ref Expression
Assertion fvconst F : A B C A F C = B

Proof

Step Hyp Ref Expression
1 ffvelrn F : A B C A F C B
2 elsni F C B F C = B
3 1 2 syl F : A B C A F C = B