Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fvconst
Next ⟩
fnsnr
Metamath Proof Explorer
Ascii
Unicode
Theorem
fvconst
Description:
The value of a constant function.
(Contributed by
NM
, 30-May-1999)
Ref
Expression
Assertion
fvconst
⊢
F
:
A
⟶
B
∧
C
∈
A
→
F
⁡
C
=
B
Proof
Step
Hyp
Ref
Expression
1
ffvelrn
⊢
F
:
A
⟶
B
∧
C
∈
A
→
F
⁡
C
∈
B
2
elsni
⊢
F
⁡
C
∈
B
→
F
⁡
C
=
B
3
1
2
syl
⊢
F
:
A
⟶
B
∧
C
∈
A
→
F
⁡
C
=
B